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The influence of excited-state absorption (ESA) and two-exciton processes on a coherent population transfer

with intense ultrashort chirped pulses in molecular systems in solution has been studied. A unified treatment

of adiabatic rapid passage (ARP) in such systems has been developed using a three-state electronic system

with relaxation treated as a diffusion on electronic potential energy surfaces. We have shown that ESA has

a profound effect on coherent population transfer in large molecules that necessitates a more accurate

interpretation of experimental data. A simple and physically clear model for ARP in molecules with three
electronic states in solution has been developed by extending the L-aAdaar calculations putting in a
third level to random crossing of levels. A method for quantum control of two-exciton states in molecular
complexes has been proposed.

1. Introduction S to a higher singlet stat, (n > 1), which relaxes back t6;
very fast31-34 Therefore, it would look as if ESA does not

The possibility of the optical control of molecular dynamics .
b y e y influence on population transf& — S, from the ground state

using properly tailored pulses has been the subject of intensive - " .
studies in the past few years?® Chirped pulses can selectively - However, in the presence of ESA an exciting pulse interacts
excite coherent wave packet motion either on the ground With POthS = S and S, = §, transitions. It is well known

electronic potential energy surface of a molecule or on the that gqhergnt optical interactions occurring in adjacent optical
excited electronic potential energy surface due to the intrapulsetr"’mSltlons in a three-state systgm m.arkedlly affe.Ct each other.
pump-dump proces&51L12In addition, they are very efficient The examples are STIRAP, lasing without inversion, coherent

for achieving optical population transfer between molecular r@PPing, electromagnetically induced transparency and others.
electronic states. Total electronic population inversion can be (For textbook treatments of these effects see, for example, ref

achieved using coherent lighmatter interactions like adiabatic ~ 52)- 1herefore, one would expect an appreciable change of a
rapid passage (ARP) in a two- or three-state systetwhich population transfe& — S, with chirped pulses in the presence

is based on sweeping the pulse frequency through a resonance® expited-state absorption in.th(_a coherent regime when the chirp
Because the overwhelming majority of chemical reactions rate in the frequency domain is not large and, consequently,

are carried out in liquid solution, adiabatic passage in molecules 1€ Pulse is rather short. . .
in solution was studied for the two-state electronic system (ARP) _ Our objective is to answer the following questions: How do
in refs 26-28 and for the stimulated Raman adiabatic passage ESA and two-exciton processes influence on a coherent popula-
(STIRAP) configuration in refs 29, 30. It has been shown in tion transfer in molecular systems in solution? What is the
ref 26 that relaxation does not hinder a coherent population Potential of chirped pulses for selective excitation of the single
transfer for positive chirped pulses and moderate detuning of @nd two-exciton states and their selective spectroscopy?
the central pulse frequency with respect to the frequency of In addition, the three-state system under discussion enables
Franck-Condon transition. us to consider STIRAP as well. Therefore, we shall also briefly
However, a two-electronic state model for molecular systems concern slowing down the pure dephasing on STIRAP in intense
is of limited utility. Indeed, excited-state absorption (ESA) fields when relaxation is non-Markovian.
occurs for a majority of complex organic molecufég3 Even The outline of the paper is as follows. In Section 2, we present
a molecular dimer consisting from two-level chromophores has equations for the density matrix of a three-state molecular system
an additional excited state corresponding to two-exciton excita- under the action of shaped pulses when the interaction with a
tion. A unified treatment of ARP in such systems can be dissipative environment can be described as the Gaussian
developed using a three-state electronic system interacting withMarkovian modulation (so-called the total model). In Section
reservoir (the vibrational subsystems of a molecule (chro- 3, we formulate a number of approaches to this model that
mophores) and a solvent). enables us, first, to clarify the underlying physics and, second,
More often than not, ESA in complex organic molecules to understand the validity of the results obtained by the total
corresponds to a transition from the first excited singlet state model. The ESA effects on ARP in complex molecules are
considered in Section 4. In Section 5, we study population

! Part of the "Sheng Hsien Lin Festschrift’. transfer in molecular dimers by taking into account two-exciton
* Corresponding author. E-mail: fainberg@hit.ac.il. . . .

*Holon Institute of Technology. processes. In Section 6, we consider slowing down the pure
8 Tel-Aviv University. dephasing on STIRAP in strong fields when the systéath
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interaction is not weak (non-Markovian relaxation). We sum- 5,.(x.t) = p,(X,t) exp[~i(w.t — @;(1))], PrgXt) =
marize our results in Section 7. In the Appendix, we extend - _ ~ —
calculations of two-photon excitation of a quantum ladder p24X1) €XPl _I(wzt P20, Prslx)
system by a chirped pul¥eto nonzero two-photon detuning. p1a(Xt) exp{ — i[(w; + @)t — (@1(t) + @(O)]} (4)

2. Basic Equations we get

Let us consider a molecular system with three electronic states 9 — MO, L
n=1, 2, and 3 in a solvent described by the Hamiltonian 3110 = IM[€1015(x)] + Ly3,(X1)

3 0 _ ~ *
H,= Y IndE, + W,(Q)]m| (1) ﬁpzz(xvt) = = Im[Q;p,(Xt) + Q3 pax,1)] +
" Loppo(X,t) + 20 55034(X 1)
whereE; > E, > Ej, Ej is the energy of stata,W,(Q) is the 9 .
adiabatic Hamiltonian of reservdg (the vibrational subsystems ~ 3;Pss(%t) = = IM[€2:055(x,)] + (L3 = 2['5p)p55(X,1) )
of a molecular system and a solvent interacting with the three- 5
level electron system under consideration in stgte O ) = ilwas — - (1) — (AB) X5 (1) +
The molecular system is affected by two shaped pulses of atplz_( H=ilwz 10 = ﬁ_) XPx)
. f . d | | ~ ~
carmer frequencies, andw EQT [p22(%t) = p1(X1)] — EQZPB(XI) + Ligprxt) (6)
1
E(t)=- E(t) +cc. = 0~ . - ~
® 2 4 ® 5913()(-0 =i[ws; — w,(t) — w,(t) — (APB) 1X3X]P13(X1t) +
1 - : . ([P [ ~
- Z €i(t) exp[-imt +ig()] +c.c. (2) 2 1P23(Xt) — 2 2P1(%) + (Lyz — Tax)paa(Xt) (7)
i£T2
0~ . _
which are resonant to optical transitions—4 2 and 2— 3, —ths(X:t) = i[(wg, — @y9) — 0,(1) = () (X — XN x
respectively (ladder configuration). Hexi¢t) andg;(t) describe i
the change of the pulse amplitude and phase, respectively, in a Pog(X )+ EQ’; (D[p3a(X,t) — po(X,0)] +
time t. The instantaneous pulse frequencies @j®) = wi — i
(dgi/dt). EQlﬁla(x,t) + (Lyz — I'g)pas(Xit) (8)

The influence of the vibrational subsystems of a solute and
a solvent on the electronic transition can be described as auh _ _
. ; o o ereQ; = Dyjer/h andQ, =
modulation of this transition by low frequency (LF) vibrations ! 2161 2
{wg} 2"38In accordance with the FranelCondon principle, an 5 : o
electronic transition takes place at a fixed nuclear configuration. + Xié,(ziﬁ) Is the frequ.ency of FranekCondon transition &~ .
Therefore, for example, the quantitfyQ) = Wx(Q) — Wy(Q) , wy = (B — E)f is the frequency of purely electronic
— Wx(Q) — Wi(Q)T iss the disturbance of nuclear motion under transitionj — i, Djj are matrix elements of the dipole moment

electronic transition - 2. Here, [} = Trx(...or) denotes the operator, l_’gg is a probability_ of nonradiative transition-3 2
trace operation over the reservoir variables in the electronic statefolr. the excited-state absorption problem (see belw)):= (A
n wg)¥? is a dimensionless shift between the potential surfaces
of states 1 angl(x; = 0), which is related to the corresponding
PR = exppW)/Trgexp=LW,), B =1kT Stokes shiftwi‘t of the equilibrium absorption and lumines-
cence spectra for transition-% j. The last magnitude can be
The relaxation of electronic transition-+ 2 stimulated by~ written aswg = oy, where o3, denotes the LF vibration
LF vibrations is described by the correlation functikitt) = contribution to a second central moment of an absorption
m(O)u(t)Oof the corresponding vibrational disturbance with spectrum for transition > j. The terms
characteristic attenuation timg.1238 We suppose thdtws <
ksT. Thus{wg} is an almost classical system, and operas L =7t 8_2
are assumed to be stochastic functions of time in the Heisenberg ] S o
representation. The quantitycan be considered as a stochastic
Gaussian variable. We consider the Gaussiarkovian on the right-hand side of eqgs 5 describe the diffusion in the
process wheK(t)/K(0) = S(t) = exp(—|t|/zs). The corresponding  corresponding effective parabolic potential
Fokker—Planck operatot = 75 [(1/f®?)(3%0q?) + (g — d)
x (9/0q) + 1] describes the diffusion in the effective parabolic U(x) =E + l(x _ Xj)z (=123) (10)
potential I 128 e

Dsxo/h are the Rabi frequencies

for transitions — 2 and 2— 3, respectively. Herepi; = o

+(x—xj)§(+1 )

L. =(L +L)2
U@ = E + 5i(a - d)? ©) mhry
The partial density matrix of the syste#p(x,t) describes the
of electronic stat¢ wherers 1 = D@2 andD is the diffusion ~ system distribution with a given value of at time t. The
coefficient. Going to a dimensionless generalized coordirate Ccomplete density matrix averaged over the stochastic process
= g@+/j3, one can obtain the equations for the elements of the that modulates the system energy levels is obtained by integra-
density matrixp;(xt) by the generalization of the equations of ~tion of 6ij(xt) over the generalized coordinate
ref 26. Switching to the system that rotates with instantaneous

frequency Eb@(t)=ff>ij(x,t)dx (11)
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where diagonal quantitié[j(t) are nothing more nor less than  generalization of equations of refs 41, 42, 48, and 49 where
the populations of the electronic statégfj(t) = n;, ny + nx +
n; = 1. afy 9

We solve coupled eqs-38, using a basis set expansion with Lep12 = pa_q aplg ap TPty dq(Ul(Q) +UA@)
eigenfunctions of diffusion operatdrys, similar to ref 26.

The solutions, corresponding to the procedure described inis the Fokket-Planck operator for overdamped Brownian
this section, are termed the total model for short, bearing in oscillator with attenuation constapt
mind that they take into account all the relaxations (diffusions)  In the case of appreciable Stokes losses when the perturbation
related to populations and electronic coherences between all theof the nuclear system under electronic excitation2l(a quan-

electronic states. tity(Ua(q) — Un(@))/h — w3 is large, the quantitpwiz(q,p.t)
oscillates fast due to the first term on the right-hand side of eq
3. Approximate Models 12 (see also ref 42). Therefore, to the first approximation, one

can neglect changes @fw2(q,p,t) due to the last term on the
right-hand side of eq 12. Neglecting this term, integrating both
sides of eq 12 over momentum, and bearing in mind that

In this section we describe a number of approaches to the
total model (egs 58).

3.1. System with Frozen Nuclear MotionFor pulses much
shorter tharnrs, one can ignore all the terms L, Lj on the . o
right-hand sides of eqs-3B. It means that our system can be i@ = /7 Bwy(@pdp (13)
described as an ensemble of independent three-level systems
with different transition frequencies corresponding to a pure gndx = q@\/ﬁ, we get
inhomogeneously broadened electronic transitions. In this case,
the density matrix equations can be integrated independently & 3~

— _ -1 ~
for eachx. After this, the result must be averaged over 12(X t) = i[wy — wy(t) — (AB) XzX]Plz(X,t) +
Solutions of the undamped equations for the density matrix are N
interesting from the point of view of evaluation of the greatest 591 [22(%t) — p1a(X, )] — 2P13(X t) (14)

possible population of excited states due to coherent effects,
because these solutions ignore all the irreversible relaxationsthat is nothing more nor less than eq 6 without the last term
destructing coherence. In addition, a comparison between thel;,5,5(x,t) on the right-hand side. As a matter of fact, a
latter solutions and calculations for the total model enables us derivation of eq 14 does not involve the assumption that the
to clarify the role of relaxation in the chirp dependence of momentum is instantly equilibrated. The same can be done with
population transfer (see Section 4 below). The approach undereq 8 for pa.
discussion in this section is termed relaxation-free model for
short. 4. Adiabatic Population Transfer in the Presence of
3.2. Semiclassical (Lax) Approximation.For broad elec- Excited-State Absorption
tronic transitions satisfying the slow modulation limit, we have
o, 72 > 1, whereol, is the LF vibration contribution to a

second central moment of an absorption spectrum for tranSitionfrequency domain, the electric field can be writter|/B&)| x

i—j. In the last case, electronic dephasing is fast, and one can expli®(@)] and the phase terrd (@) can be expanded in a
use a semiclassical (short time) approxima#idithis limit is Taylor seriesb(&) = ®(w) + (1/2)D" (@)@ — w) + ... We
also known as the case of appreciable Stokes losses becausg i consider linear- _chirped pulses of the form

the perturbation of the nuclear system under electronic excita-
tion i—j (a quantityW, — W) is large. Then one can ignore 1,0 . 5
the last termL;p;j(xt) on the right-hand side of the corre- E(t) =« ex;{—z(é —iu)(t — to) (15)
sponding equation for the nondiagonal element of the density

matrix*®4%124hat describes relaxation (diffusion) @f(xt) (€ds  where the parametedsandyu are determined by the formufdd?
6 and 8). The solutions, which correspond to disregarding terms
Lij i (x,t) for broad electronic transitioris>j are termed partial
relaxation model for shof€ It is worthy to note that the partial

We shall study the ESA effects on ARP in complex molecules
by the example of Coumarin 153 in liquid soluti&hin the

0% =21l + 20" ()t}

relaxation model offers a particular advantage over the total 1= 40" ()[1h + 40" 2(w)] " (16)
model. The point is that the first can be derived not assuming
the standard adiabatic elimination of the momentuifor the Tpo = too/v2In2, to is the pulse duration of the correspond-

non-diagonal density matri%, which is incorrect in the slow  ing transform-limited pulse. Figure 1 shows populations of
modulation limit#2 This issue is quite important in the light of  electronic states after the completion of the one pulse action as
the limits imposed on eqs 6 and 8 for nondiagonal elements of functions of the chirp rate in the frequency domabi(v) =

the density matrig344 47°®" (w). For the molecule under consideration, a two-photon
Indeed, in the Wigner representatidr’ equation forp;, may resonance occurs at the doubled frequency of the Franck
be written in the rotating frame as (see eq 6) Condon transition > 2. Absorption spectrum corresponding

to transition 1— 3 is rather narrow and that meaxs= 0. The
values of parameters for Figure 1 were as follows: the pulse
duration of the transform-limited (nonchirped) pulge= 10

* fs, a) = 2686 cm‘l D, = D3, = 6D, 31 s = 70 fs, the

2 LG Q 1[Pu2AAPY) — pwas(@P.D] + saturatlon parameter, which is proportional to the pulse erférgy,

LepioPuaz(@pt) (12) Q = V7|Dizemadty/(2h2\/20%3) = 5; the one-photon reso-
nance for FranckCondon transition +2 occurs at the pulse
Equation 12 has been derived for harmonic potentials, eq 3, by maximum, i.e..w = w»1.

atPle(q Pt = l[(Uz(CI) Uy(@))/h — 0101 pwaap.t) —
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Figure 1. Populations of electronic states after the completion of the
pulse action as functions d"'(v) in a three-state system. Calculations
without decay of the upper state 3 into state r2: (dotted line),n;
(solid line), andnz (dashed line). Line with hollow circlesy, in the
model with fast decay 3> 2 I's; = 10 ps*. For comparison, we also
show n; for a two-state system (line with squares). Total relaxation
model with diffusion of all matrix elements.
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Figure 2. Populations of electronic states (dotted lines)n, (solid

lines), andn; (dashed lines) after the completion of the pulse action
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Figure 3. Populations of electronic states (dotted line),n; (solid

line), nz (dashed line), and, + ns (line with hollow circles) after the

completion of the pulse action as functions®f(v) for the relaxation-

free modelrs — . Other parameters are identical to those of Figure 1.
In the case under consideration, the combined populatienns does

not depend o' (v).

strongly decreases whe''(v)| increases. To clarify the reasons
for strong decreasings, it is instructive to carry out the
corresponding calculations for the relaxation-free model of
Section 3.1 shown in Figure 3. In this case excitation of state
3 with a transform-limited pulse is slightly more effective as
compared to a strongly chirped pulse of the same energy. The
point is that a two-photon resonance occurs for a number of
spectral components of a transform-limited pulse and only at
the maximum of a strongly chirped pulse.

However, Figure 3 does not show strong decreasing of the
population of state 3 whe®"'(v) increases. This means that
relaxation is responsible for strong decreasiggs a function

calculated without decay of the upper state 3 into state 2 as functions of ®"(v) despite that relaxation does not destroy ARP when

of ®@"(v). The partial relaxation and the total modellines with and
without hollow circles, respectively. All the parameters are identical
to those of Figure 1.

Figure 2 contrasts calculations using the total model (Figure
1) with those of the partial relaxation model. The latter includes
both diffusion of all the diagonal elements of the density matrix
and one off-diagonal elemepis. The point is that transition 1

the Rabi frequencies exceed the reciprocal irreversible dephasing
time (T")~1 27
Q> 1T (18)

The last condition was fulfilled in our simulations at least for
|®"(v)| < 10* fs2

— 3 occurs without changing the state of vibrational subsystems  To clarify this issue, we shall consider a population transfer
of a molecule and a solvent, and therefore cannot be describethetween randomly fluctuating levels.

in a semiclassical (short time) approximation. Figure 2 shows

4.1. Population Transfer between Randomly Fluctuating

a good agreement between calculation results for the modelsLevels. The picture of randomly fluctuating levélsoffers a

under consideration.

One can see from Figure 1, first, that populatienfor a
molecule with a fast decay 3> 2, which closely resembles
experimental dafa for LD690 (according to ref 23, LD690
shows ESA), is distinctly different from that of a two-state
system for|®"(v)| < 15 x 10° fs?2 when the excited pulse is
rather short. This means that the excited-state absorption has
profound effect on coherent population transfer in complex
molecules.  Second, nz strongly decreases when
|®"(v)| increases.

To understand these results, we will consider first two
transitions separately. One can obtain the following criterion
for the adiabaticity of one transition in the absence of relax-
ation: Q' > 1 whereQ' is the saturation parameter. It conforms
to the value ofQ = 5 used in our calculations. The condition
Q' > 1 follows from the adiabatic criterion for a two-level
system

<1Q (1) 17)

‘dw(t)‘
at
where Q1 5(t) = |D2132(t)|//h are the Rabi frequencies for
transitions 1— 2 and 2— 3, respectively. Adiabatic criterion
eq 17 was fulfilled in our simulations for both transitions-1
2 and 2— 3 at any®"'(v). However, Figure 1 shows thag

simple and physically clear explanation of numerical redilts
obtained for population transfer in a two-state system. Here,
we shall generalize the Landaidener (LZ) calculations putting
in a third leve?? to random crossing of levels.

Let us write the Schdinger equations for the amplitudes of
statesa; » 3 for the system under consideration. Switching to
@ew variablesy

= it
a = a.ex{— f; U, (19)
we obtain in the rotating wave approximation
&
i— az =
t &,
(U, —Upia+ w,(t) —242 0 EN
—Q,/2 0 —Q,2 a,
0 —Q,/2 (U — Uyl — wy(t) [\&s
(20)

Throughout this section, effective parabolic potentials (10)
are considered as functions of generalized coordinate
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x oy — o Uo) = § + (2o){a + Joilyol +

(—1)s9n%),/w2]}2. Here

(Us — Up)lh — y(t) = [(05p + 0i12) — w,] + a+ pst
(21)

for x3 = x; (that corresponds to Coumarin 153), and

(Uy = Uplh + 0,(t) = [0 — (05 — 0g12)] + o0 — it
(22)
for linear chirped pulses1 At) = w12 — u14.

Let us define instantaneous crossings of state 2 with photonic
repetitions 1and 3 of states 1 and 3, respectively. They are

Fainberg and Gorbunov

= [ daf [ "P(L - P)(1 — Qf(e,a)de +
S (@ = P - Qf(e0)da +
[ — P)(1 — Q)f(a,c)der] (28)

Here f(o,0) is the joint probability density foro. and its
derivativea:

0~2

205

1 2

w4
27y 035(—K(0))

o
2k(0)

f(oue) = + (29)

k(0) is the second derivative of the correlation functidgt)
= < a(0)(t) > = oy exp(—|tl/zs) of the energetic fluctua-
tions evaluated at zero. Equation 28 is written for> 0

determined by the conditions that quantities eqs 21 and 22 aré(negatively chirped pulse). One can easily show thais

equal to zero

o ft) = (@5 — ©12) — @y + pyt = ay(0) + pgt

pat) = w, — (w3

o+ 0gtl2) = it = 0,(0) — it (23)
Near the intersection points one can consideas a linear
function of time. For smalt,a(t) &~ a12(0) + at. Let a(0) =
a23(0), that is, states 2,' and 3 cross at the same point when
t = 0. This means

Wy + 0H= w0, + o, (24)
that is, the two-photon resonance occurstfer0. Then eqs 20
take the following form

q & (0 —upt —2,/2 0 a,
i& &L|=|-2/2 0 —Q.,12 &| (25)
&, 0 —Q,2 (o + u)t)\&s

that can be reduced to eq 2 of ref 50. Using the solution obtained
in ref 50 and considering identical chirps when= u, = u,
we get for the initial conditiona;(—)|?2 = 1, |ag,3(—)[2 =0

|ag(e0)|* =

(1-P)L—Q)for — |u| < ¢ < |ul
P(1 - P)(1 — Q) for both
o > —uwhenu < 0, anda < —u whenu > 0
Q@ — P)(1 — Q) for both
& < uwhenu < 0, anda > 4 whenu > 0
P= exr{— e 2

S s e
go—u) QTN 2o @0

Similar to ref 27, we considext as a stochastic Gaussian
variable. Consequently, we must average eq 26 over a rando
crossing of levels described by Gaussian random noise induce
by intra- and intermolecular fluctuations. It can be easily done
for a differentiablglnon-Markovian) Gaussian proce€searing
in mind an independence of anda from each other for such
processes. Therefore, we shall consider in this sectigroa-
Markovian) Gaussian noise, as opposed to previous sections
In addition, we consider a slow modulation limit whe#f 72
> 1. Averaging eq 26, we obtain the following expression for
the population of state 3 when> 0

(26)

where

2

symmetrical with respect to the chirp sign. The point is that a
simple stochastic model of this section misses any chro-
mophore’s effects on bath, in particular the dynamical Stokes
shift (see ref 51 for details). This is opposite to the models of
previous sections, which do describe the dynamical Stokes by
the drift term (the second term on the right-hand side of eq 9).
Integrating eq 28 with respect toand entering a dimension-

less variabley = a/|u|, we get

s \/zzi[f_: PL-P)1-Q exp(—gyz) dy +
JLa-Pa - Qexd -3y +

J7 - P - Qex{-57) ¢ @)
where
%y X
P= ex;{—gg Jly — 1|) andQ = ex[{—zIy Y (32)
and
— n_gzg > — — lu_z >
=5 T % T O (32)

are dimensionless parameters.

When adiabatic criterion of eq 17 is satisfied, paramgeter
much larger than 1 becaulkn(t)/dt] = |u| for a linear chirped
pulse. Then the integrals on the right-hand side of eq 30 can be
evaluated by the method of Laplace, similar to ref 27. The result
is especially simple for strong interaction, eq 18, where the
irreversible dephasing time of transitions12 and 2— 3 is
given by’ T' = 1/[—k(0)]¥4 Then, as one can see also from
egs 30 and 31, the main contributionrigis given by

= [JE 1 oxd L)y = erf T
ng—\/;flex 2yzdy er 7 (33)

ince erf(1.5)= 0.966, we obtain that relaxation does not hinder
a population transfer to state 3 when

ulT? = 2 (34)

For strongly chirped pulsé?, |u| T2 ~ 2V/27°T¥|®" (v)|.

. eq 34 expresses an extra criterion for coherent population
transfer to those we have obtained before for a two-level
systen?’ eqgs 17 and 18. New criterion (34) implies conservation

of the counter-movement of the photonic repetitions of states 1
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Figure 4. Population of state 3 as a function of the irreversible
dephasing tim&" for ®"(v) = 10* fs? calculated by eq 33 (solid line
with circles) and numerical solution of eqs-8 (dashed line with

squares)Ng no relaxation= N3(T" — ). Other parameters are identical to
those of Figure 1.
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Figure 5. Populations of electronic states after the completion of the
pulse action as functions df"'(v) in a three-state system. The frequency
of purely electronic transition 3> 2, wg'z, decreases by:/4 with the
conservation oks = 0. Calculations without decay of the upper state
3 into state 2:n; (dotted line),n, (solid line), andn; (dashed line).
The corresponding populations in the model with fast decay3T's;

= 10 ps? are shown by the same lines with hollow circles.
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Figure 6. Populations of electronic states after the completion of the
pulse action as functions d#''(v) in a three-state system. Equilibrium
position of state 3 is offset to the right by = x,/2 and down so that
frequencies of FranckCondon transitions 4> 2 and 2— 3 are equal,
w21 = w3y Calculations without decay of the upper state 3 into state 2:
n, (dotted line),n, (solid line), andn; (dashed line). The corresponding
populations in the model with fast decay-3 2 I's; = 10 ps? are
shown by the same lines with hollow circles.

and 3, in spite of random crossing of levels. Condition (34) is

J. Phys. Chem. A, Vol. 111, No. 38, 2009565

difference concerning the position of state 3. The frequency of
purely electronic transition-32 w5, decreases by./4 with

the conservation of; = 0 for Figure 5. Equilibrium position

of state 3 is offset to the right bys = x,/2 and down so that
frequencies of FranckCondon transitions > 2 and 2— 3

are equalws; = wsy, for Figure 6.

One can see from Figures 1, 5, and 6, first, that population
n; and, as a consequena®,+ nz depend only slightly on the
occurrence of fast decay-3 2. Second, populationg andns
in the absence of fast decay-3 2 are very sensitive to the
violation of the two-photon resonance condition. However, a
behavior ofn,, when fast decay 3— 2 occurs, andy; as
functions of ®”(v) is very similar for the figures under
discussion, regardless of the two-photon resonance condition.
Experimental measurements commonly corresponi,tand
are carried out under the fast decay-3 conditions. Thus the
behavior ofn, for fast decay 3— 2 shown in Figures 1, 5, and
6 is rather versatile.

5. Population Transfer in the Presence of Two-Exciton
Processes.

Selective Excitation of Single and Two-Exciton States with
Chirped Pulses.Consider a dimer of chromophores each with
two electronic states described by the Frenkel exciton Hamil-
toniarP4-56 and excited with electromagnetic field eq 2. The
Hamiltonian of the dimer is given by

H= Z thB;Bm + hJ(BIBz + B;Bl) + Hbath+ Heb_
m=1,2
Z D,,* E(t)(B} + B,) (35)
m=1,2

where B; = |mD| (B, = |Oin|]) are exciton creation
(annihilation) operators associated with the chromophore
which satisfy the commutation ruIesB,{B;] = Ol —
ZB:;Bm), Onmis the Kroenecker delta an@Cand|mdenote the
ground state and a state corresponding to the excitation of
chromophoren, respectivelyDy, is the transition dipole moment
of moleculem, Hpatnrepresents a bath amtly its coupling with
the exciton system. We assume that the bath is harmonic and
that the coupling is linear in the nuclear coordinates

Hep= — h z amnBrJ'ran (36)
mn

where an represents collective bath coordinatd®; (hQ»)
andhJ are the exciton energy of 1 (2) chromophore and their
coupling energy at the equilibrium nuclear coordinate of the
ground electronic state. One can considgr as diagonalgin,
= aOnmON the assumption that the electronic coupling constant

exemplified by Figure 4. In addition, Figure 4 shows an excellent fluctuation amplitude is negligibly smaller than the site energy

agreement of simple formula (33) with numerical calculations.
It is worthy to note that condition (18) was fulfilled in our
simulations, though in the last caBe= (rdo29) 3 is determined
independently ok(0),53 which does not exist for the Gaussian-
Markovian process.

4.2. Influence of Excited-State Absorption When Detuning
from Two-Photon Resonance OccursFor Coumarin 153 in

liquid solution considered above a two-photon resonance occurs

at the doubled frequency of the FrargRondon transitiont-2.

fluctuation amplitudé®
Diagonalizing the electronic Hamiltonian

H, = Z hQ BIB.+HhJB/B,+B;B,) (37)
m=1,2

by unitary transformatiorf

Ul (cosﬂ sin 9)

—sinf co¥ (38)

In this section, we consider populations of electronic states when

the condition for two-photon resonance is violated. Figures 5 where
and 6 show populations of electronic states for the total model

after the completion of the pulse action as functionsbd{v)

for the same values of parameters as for Figure 1 with the only

0<0 <2,

(39)
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one can get the eigenstates for the one-exciton statéand
the transition dipole momeng; (i = 1,2) corresponding to

Fainberg and Gorbunov

whereK(t) = h2ld (t)ay (0) = A ~200p(t) op(0) = A 2@(t)a(0)0]
Further calculations simplify considerably if the off-diagonal

the transitions between the ground and single-exciton states agart of the interaction with the bath in the exciton representation

(ael) _ U_l(Al) _ (A1 cosf + A, sin6
8 A

Hereag =

hQ, = hQ,coS0 + hQ,sin 0 + filsin 20

hQ, =hQ;sin’0 +hQ,co$0 —hlsin 20 (41)

The two-exciton state wavefunction and its energy are as the,

following:
|esC= B, B, |00=B, |00 (42)
hQ, =hQ, +hQ, (43)

The transition dipole moments between the single-exciton and

two-exciton states are given by

Dee, = DySin6 + D;c0s0H, Dy g,

e, = D,cos6 — D,sin6 (44)

However, the transition between the ground and two-exciton

states is not allowed.

In the eigenstate representation, the Hamiltonian of eq 35 is WhereK(0) = K'(0) =

rewritten as

_ o R + _ +
H_i:;e.h(gq 0 )B, By, ha,; aququvL

i=]

Hoath — Z [De(Bq + Bg) + Dee (BaBe + BoB)I*E(t)

(45)
Here the interaction with the bath is given by
e aeez -
h(al o )=U HU =
e e
o, cog 0 + o, sin’ 0 %((12 — a,)sin 20
h 1 (46)
5 (0 — ay)sin 29 o, Sinf 6 + o,cos @
and
O, =0yt 0y 47)

—A,sinf + A, cose) (40)

la[) Dei andA; = B/ |00 D;; Dy and D are the site
transition moments. The two one-exciton energies are given by

0e1€ = 061 in eq 46 can be neglected. This approximation is
discussed in refs 55 and 58.

The correlation functioiK(t) can be represented as the Fourier
transform of the power spectruf(w) of Aoy (= hap)®®

Kt) = /" do®(w) explot)

where

D(—w) = ®(w) exp(—pho) (50)

Using eq 50, the real and imaginary parts<gf) = K'(t) +
iK' (t) can be written as

K1) = [, do®(w)[1 + exp(-pho)]coswt
K'(t) = [, do®(w)[1 — exp(-pho)]sin wt
In the high-temperature limit, one gets
K'(t) =2 [ dod(w)cosst
K'(t) =hp [, do®(w)w sinot

2 [odw®(w) = K20, = hwsf 4, ando,

and ws; are a second central moment and the Stokes shift of
the equilibrium absorption and luminescence spectra, respec-
tively, for each monomer.

Similar to Section 2, we will consides. = —u/h as a
stochastic Gaussian variable with the correlation function
[B(t)a(0)O= o2 exp(—|t|/zs) corresponding to the Gaussian
Markovian process. In this case, the FokkPtanck operators
for the excited-state of each monomer has the following form

2
_ 10 G
Lm—‘L’S a—X2+(X—Xm)a—X+1 (51)

wherex = qiv/ = a/,/o, is a dimensionless generalized
coordinate. Bearing in mind eq 49, the Fokk&lanck operators
for the eigenstatel§(1= |0C] e Cof the exciton Hamiltonian can
be written by eq 9 wherg = 0, X = Xe2 = Xm(c0$' 6 + sin®
0) andxes = 2xm. The corresponding transition frequencies at
the equilibrium nuclear coordinate of the ground electronic state
are defined by egs 41 and 43.

Consider a homodimer complex consisting of identical
molecules withQ; = Q, = Q andD; = D, = D. For this

for the single-exciton and two-exciton states, respectively. CaS€, Using eqs 3841, 43, and 44, we obtaifl = /4

Equations 46 and 47 define the fluctuating parts of the single-

exciton and two-exciton state transition frequencies.

Let us consider various correlation functions. Under the
assumption that baths acting on different chromophores are

uncorrelated

[ ()a,(0)C= 0 form=n (48)

hQ, =h@Q=+J), hQ, =2h0

De, = Dee = V2D, D, =D, =0 (52)
We thus need to consider only three statis] |e;[] and|esl)

because state,[lis not excited with light. Letting10) |2 and

|3CrepresentOl] |e ] and|esl] respectively, we arrive at a three-

and that the site energy fluctuation correlation functions are state system considered above whese= Q + J, wa; = 2Q,

identical for the two monomer®$;>¢we get
[0, (£) 0Leg (0) = [t (D)0tep(0) = A 2K (1) (cOS' 6 + sini’ )
[lteq()oea(0) 0= 212K (1) (49)

Dy = D3y = \/_D, X1 = 0, X2 = (1/2)Xm, X3 = 2Xm.

Figure 7 shows populations of single and two-exciton states
after the excitation with a linear chirped pulse, egs 15 and 16,
as functions of®'"(v). Here, the one-photon resonance for
Franck-Condon transition 1> 2 occurs at the pulse maximum,
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1.0+ amplitudeas due to two-photon transition 4> 3 involving a
nearly resonant intermediate level 2 for such system. Amplitude
0.8+ ag = arp + as consists of two contributions. The first olgp
® corresponds exactly to that of the nonresonant two-photon
-% 0.6 transition. This contributiorarp ~ 1/|®"(w)|, and it is small
2 F for strongly chirped pulsé3
no_ 0.4_.,Jf
" 2
s 209" (@) << 155 (53)
Y e— ' . , . ] This result has a clear physical meaning. The point is that the
5 4 3 2 1 0 1 2 3 4 5 phase structure (chirp) of the pulse determines the temporal
@"(v) (x10*fs?) ordering of its different frequency components. For a strongly

Figure 7. Populations of the ground (dotted line), single- (solid line), chirped pulse when a pulse duration is much larger than that of

and two-exciton (dashed line) states of a homodimer complex after the corresponding transform-limited one, one can ascribe to

the completion of the pulse action as functionsiof(v) for J = —300 different instants of time the corresponding frequeneiess a

e * (IJ <| 0— J'aggre%ate)qlz 2'9'|tP°|.= 10 f_shfs = 1O_Ohfs' Trt‘e” matter of fact, in the case under consideration different frequency

gﬁ?l?s rfez);aet'c?ice?;dt € total models-lines with and without hollow components of the field are determined via values of the
' instantaneous pulse frequena(t) for different instants of time.

TABLE 1 Therefore, only a small part of the whole pulse spectrum directly
populations after NC pulse excites the two-photon resonance.
the completion  transform limited pulse (@' = —10*fs?, The second contribution is given ¥y
of pulse action (P" =0,t, = 71fs) tp,=71fs)
e 0.317 0.573 Dy,D,
N3 0.208 0.057 ag=— WE(wZJ)E(w&){l — sgNn[(w,; — w3 P ()]}
(54)

that is,w = w1 = Q + J, and the Stokes shift of the equilibrium

absorption and Iunlwin(_ascence spectra for each monomer is equalhereE(@) is the Fourier transform of the positive frequency
towg ™ = 400 cn1™. Figure 7 also contrasts calculations using  components of the field amplitudgt)explig(t)]. The consid-

the total model (lines without hollow circles) with those of the  aration of the Appendix enables us to extend the results of ref
partial relaxation model when only diagonal matrix elements 3g 9 nonzero two-photon detuning, = ws; — 2w = O.
of the density matrix undergo diffusion (lines with hollow  gqation 54 describes a sequential process, the contribution of
circles). Figure 7 shows a good agreement between theyich s a steplike function. This process can be suppressed
calculation results for both models. . ~ when the pulse frequencies arrive in a counterintuitive order
Furthermore,. one can see strong suppressing the population,., beforew,s) that occurs in our simulations of a J-aggregate
of the two-exciton state for negatively chirped (NC) pulse for NC excitation. Figure 7 and Table 1 show that the selective
excitation. As a matter of fact, one can suppress or enhanceproperties of chirped pulses under discussion are conserved on
two-exciton processes using positively or NC pulses. Our girong field excitation and for broad transitions. The selective
calculations (see Table 1) show two-fold benefits of NC pulse gycitation of single and two-exciton states can be used for

excitation (b = —10*fs?) with respect to the transform limited  preparation of initial states for nonlinear spectroscopy based
pulse @" = 0) of the same duratiort,(= 71 fs) and energy 4, pulse shapinff6t

tuned to one-exciton transition; the population transfer to the
single exciton state is larger, and that to the two-exciton state
is smaller.It is worthy to note good selective properties of
chirped pulses, bearing in mind strong overlapping Franck
Condon transitions 1— 2, wy1, and 2 — 3, wszx. The

6. Strong Interaction and STIRAP

The three-state system under discussion enables us to consider
7 . ! STIRAP as well. STIRAP in molecules in solution was studied
c?nrorr(]espondlng frequencies differ sz — w21 = —2J — (3/4) in ref 29 where the solvent fluctuations were represented as a
wg for the model under consideration that comesut — Gaussian random process and in ref 30 where the system-bath
w21 = 300 cm * for the used values of parameters. On the o hjing was taken to be weak in the sense that the relaxation
other hand, the bandwidth of the absorption spectrum at half- i hes were long in comparison to the bath correlation tirge,
maximum for transition 2- 3 comes tAAw = 24/2In205; ~ Intense fields were shown in ref 30 to effectively slow down
1024 cnt ! that is larger thamsz, — wo1. Hereozg = (hp) L the dephasing when the energetic distance between the dressed
w2 is the LF vibration contribution to a second central (adiabatic) states exceedsl/The point of the last paper is
moment of an absorption spectrum for transitior=23, and that in contrast to usual undressed states, which intersect, the
wi? = () Uxs — x2)2 = (94w is the corresponding dressed (adiabatic) states do not intersect. Therefore, the spectral

Stokes shift. * density of the relaxation induced noise, which has a maximum

This issue can be understandable in terms of the competition@t Z€ro frequency,_ stro_ngly diminishes for frequencies corre-
between sequential and direct paths in a two-photon transftion. SPonding to the light-induced gap between dressed states,
Consider a three-level atomic ladder system in the absence offésulting in suppressing pure dephasing between the dressed
relaxation with close transition frequencies; ~ wz, where states. In this section, we show that this conclusion holds also
w,1 can be associated with one-exciton excitation and frequency for non-Markovian relaxation when the systetrath interaction
ws1 — With two-exciton excitation. The system is affected by is not weak and, therefore, cannot be characterized only.by
one phase modulated pulse of carrier frequedncyeqs 2, 15, In the rotating wave approximation, the Soflir@er equations
and 16. In the Appendix, we have calculated the excited-state for STIRAP in A-configuration can be written as follows
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y U; —hQ,/2 0 a

. d

'h& a|=|—-hQ/2 U, —hQ,2|(a,]| (55)
ag 0 — hQ,/2 Uj a,

where U} = U; + hw; and U3 = Us + Aw, are photonic
replications of effective parabolic potentidli(x) and Us(x)

Fainberg and Gorbunov

separately. By this means usual criteria for ARP in a two-state
system must be revised for a three-state system.

To clarify this issue, we have developed a simple and
physically clear model for ARP with a linear-chirped pulse in
molecules with three electronic states in solution. The relaxation
effects were considered in the framework of the LZ calculations

(eq 10), respectively. We consider the two-photon resonanceputting in a third level generalized for random crossing of levels.

condition whenw; — w, = (Es — Ej)/h andx; = x3 = 0O that
would appear reasonable whet[ and |30 are different
vibrational levels of the same electronic state. ThEn= U3,

Adiabatic states)2? corresponding to eq 55 can be found by
equation

U, - U —hQ)/2 0
det| —AQu2 U,— UM —hQ,2
0 —hQ,/2 Uy — U™

0

This gives the following adiabatic states

Ug'=Uy= U
U= 50, + U & 5y/(U, ~ U +1A@ + @) (56)

One can see that initial; and final U; diabatic states
coincide with one of adiabatis state”. For strong interac-
tion, the last will be well separated from other adiabatic states
Uid due to avoided crossing. Therefore, during STIRAP the
system will remain in the same adiabatic sttaig@, which isU}
for t = —e0 andUj for t = +. Its evolution due to relaxation
stimulated by LF vibrations can be described by
the corresponding FokkePlanck operatorLgd = Lz =
7s Y((0%0x%) + x(9/0x) + 1) describing diffusion in adiabatic
potentialU3® = U', = Uy. This means that during transition 1
— 3 the system motion along a generalized coordixadees
not change. In other words, such a transition will not be

accompanied by pure dephasing. This conclusion is a gener-

alization of the previous restrelative to slowing down the
dephasing in strong fields, which was obtained for weak system-
bath interaction, to non-Markovian relaxation.

7. Conclusion

In this work, we have studied the influence of ESA and two-
exciton processes on a coherent population transfer with intens
ultrashort chirped pulses in molecular systems in solution. A

unified treatment of ARP in such systems has been developed

using a three-state electronic system with relaxation treated a
a diffusion on electronic potential energy surfaces. We believe

that such a simple model properly describes the main relaxation

The model has enabled us to obtain a simple formulafpeq

33, which is in excellent agreement with numerical calculations.
In addition, the model gives us an extra criterion for coherent
population transfer to those we have obtained before for a two-
state system’ New criterion, eq 34, implies conservation of
the counter-movement of the photonic repetitions of states 1
and 3, in spite of random crossing of levels.

Furthermore, we also applied our model to a molecular dimer
consisting from two-level chromophores. A strong suppressing
of two-exciton state population for NC pulse excitation of a
J-aggregate has been demonstrated. We have shown that one
can suppress or enhance two-exciton processes using positively
or NC pulses. As a matter of fact, a method for quantum control
of two-exciton states has been proposed. Our calculations show
good selective properties of chirped pulses despite strong
overlapping transitions related to the excitation of single- and
two-exciton states.

In light of the limits*®#4 imposed on eqs 6 and 8 for
nondiagonal elements of the density matrix for the total model,
we used a semiclassical (Lax) approximation (eq 14) (the partial
relaxation model). The latter offers a particular advantage over
the total model. The point is that the partial relaxation model
can be derived by not assuming the standard adiabatic elimina-
tion of the momentum for the non-diagonal density matrix,
which is incorrect in the slow modulation linfif. A good
agreement between calculation results for the partial relaxation
and the total models in the slow modulation limit (see Figures
2 and 7) shows that a specific form of the relaxation term in
the equations for nondiagonal elements of the density matrix
p12(x,t) and p23(x,t) is unimportant. By this means, the limits
imposed on the last equatittf*are of no practical importance
for the problem under consideration in the slow modulation
limit. This issue can be explained as follows. Our previous
simulationg® show that in spite of a quite different behavior of
the coherences (nondiagonal density matrix elements) for the
partial relaxation and the total models, their population wave

epacketspjj(x,t) behave much alike. Because we are interested

in the populations of the electronic staigs= pjj(x,t)dx only,
which are integrals op;(x,t) overx, the distinctions between

Sthe two models under discussion become minimal.

In conclusion, we have also demonstrated slowing down the

processes related to overdamped motions occurring in largePUre déphasing on STIRAP in strong fields when the system-

molecules in solutions.

Our calculations show that even with fast relaxation of a
higher singlet stat&, (n > 1) back toS;, ESA has a profound
effect on coherent population transfer in complex molecules that

bath interaction is not weak (non-Markovian relaxation).
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necessitates a more accurate interpretation of the corresponding

experimental data. In the absence&f— S relaxation, the
population of state3[] ns, strongly decreases when the chirp
rate in the frequency domai®'' (v)| increases. To appreciate

Appendix

Let us consider a three-level syst&mn< E, < E;z with close

the physical mechanism for such behavior, an approach to thetransition frequenciea: ~ w3, wherew,; can be associated

total model, the relaxation-free model, was invoked. A com-
parison between the total model behavior and that of the

with a single-exciton excitation and frequen@yg; with two-
exciton excitation. The system is affected by one phase-

relaxation-free model has shown that relaxation is responsible modulated pulse of carrier frequeney eq 2. The excited-state

for strong decreasings as a function of®'"(v) in spite of
meeting adiabatic criteria for both transitions412 and 23

amplitude for a two-photon transition involving a nearly resonant
intermediate level, can be written®a86
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D3.Dyy
- P 7| E(w,7) E(wgy) +

az =

E(Q + w)E(Q, — Q + w)
Q — (wy — )

i o
P J7,dQ (57)
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whereE(a) is the Fourier transform of the positive frequency 200q 113 (20), 8969-8980.

components of the field amplitudétexplig()], @ = & — w,
P is the principal Cauchy value, ard, = ws; — 2w is the

two-photon detuning. For linear-chirped excitation, egs 15 and

16, E(®) is given by

E(@) = Vegny, exp[ - %Qz[rg()/Z - i(ID”(a))]} (58)

Through the use of eq 58 and by introducing a new variable

= Q — Q,/2, eq 57 can be written as
[)32[)21772(60'%0)2
_ -
(Q, — 02 - i@”(w))] + ex;{—%Qf(réOIZ -
expl-Z(t2y2 — i9"())]
z— (0 — Q,2)

1
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whered = w,1 — w is one-photon detuning. The integral on
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of the corresponding transform-limited one. In this case, two 17595

frequency ranges give main contributions to the integral. The

first one results from the method of stationary ph&samd it is
localized near the two-photon resonazce w — w31/2=01in

the small rangeAw ~ 1/4/|®"(w)|. In this case only a small

partAw ~ 1/i/|®"(w)| of the whole pulse spectruthwpyise=

4/t directly excites the two-photon resonance, and the corre-

sponding contribution~ 1/4/|®"(w)| is small due to eq 53.
The second contribution to the integral is located rearo

— Q,/2, and it is due to the pole at the real axes. This

contribution is given by eq 54 of Section 5.
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